Learning Probabilistic CP-nets from Observations of Optimal Items

نویسندگان

  • Damien Bigot
  • Jérôme Mengin
  • Bruno Zanuttini
چکیده

Modelling preferences has been an active research topic in Artificial Intelligence for more than fifteen years. Existing formalisms are rich and flexible enough to capture the behaviour of complex decision rules. However, for being interesting in practice, it is interesting to learn not a single model, but a probabilistic model that can compactly represent the preferences of a group of users – this model can then be finely tuned to fit one particular user. Even in contexts where a user is not anonymous, her preferences can depend on the value of a non controllable state variable. In such contexts, we would like to be able to answer questions like “What is the probability that o is preferred to o′ by some (unknown) agent?”, or “Which item is most likely to be the preferred one, given some constraints?” We study in this paper how Probabilistic Conditional Preference networks can be learnt, both in off-line and on-line settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Learning of Acyclic Conditional Preference Networks

Learning of user preferences, as represented by, for example, Conditional Preference Networks (CP-nets), has become a core issue in AI research. Recent studies investigate learning of CP-nets from randomly chosen examples or from membership and equivalence queries. To assess the optimality of learning algorithms as well as to better understand the combinatorial structure of classes of CP-nets, ...

متن کامل

Optimal Decision Making with CP-nets and PCP-nets

Probabilistic conditional preference networks (PCP-nets) are a generalization of CP-nets for compactly representing preferences over multi-attribute domains. We introduce the notion of a loss function whose inputs are a CP-net and an outcome. We focus on the optimal decision-making problem for acyclic and cyclic CP-nets and PCP-nets. Our motivations are three-fold: (1) our framework naturally e...

متن کامل

The Complexity of Learning Acyclic CP-Nets

Learning of user preferences has become a core issue in AI research. For example, recent studies investigate learning of Conditional Preference Networks (CP-nets) from partial information. To assess the optimality of learning algorithms as well as to better understand the combinatorial structure of CP-net classes, it is helpful to calculate certain learning-theoretic information complexity para...

متن کامل

Reasoning with PCP-nets in a Multi-Agent Context

PCP-nets generalize CP-nets to model conditional preferences with probabilistic uncertainty. In this paper we use PCP-nets in a multiagent context to compactly represent a collection of CP-nets, thus using probabilistic uncertainty to reconcile possibly conflicting qualitative preferences expressed by a group of agents. We then study two key preference reasoning tasks: finding an optimal outcom...

متن کامل

A Probabilistic Model of Learning Fields in Islamic Economics and Finance

In this paper an epistemological model of learning fields of probabilistic events is formalized. It is used to explain resource allocation governed by pervasive complementarities as the sign of unity of knowledge. Such an episteme is induced epistemologically into interacting, integrating and evolutionary variables representing the problem at hand. The end result is the formalization of a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014